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ABSTRACT  
 
The quantization and round-off errors in IIR second order sections of digital filters are well known 
and resolved by different ways increasing the computational cost and not taking advantage of the 
special architecture of modern DSP. These undesired effects increase when the resonance 
frequency of the filter lowers respect to the Nyquist frequency. In this work, a combination of serial 
and parallel filter decomposition is developed with application to low frequencies where round-off 
errors are especially problematic. Noise-Shaping techniques are also used in order to move the 
round-off noise to high frequencies, obtaining nearly perfect behavior. The proposed structure is 
easy to implement in a DSP with very low additional computational cost compared to standard IIR 
Canonical forms, and also much less than other solutions. Finally this algorithm has been 
implemented and tested on a 32 bit floating-point DSP. 
 
 
1. INTRODUCTION  
 
The implementation of digital IIR filters with limited word-length processors (fixed or floating-point 
architectures) causes two different types of quantization errors that in general grow as the 
resonance frequency of the filter is lower (as usual in digital audio equalization) : 
 

- The quantization of the filter coefficients results in linear distortion and generates a 
deviation from the ideal frequency response due to the discrete pole-zero locations. 

- The quantization of the mathematical operations and stored values at the delay line 
generates round-off noise that limits the dynamic range of the filter and defines its noise 
behavior. Secondary effects may occur like limit cycles [Zöl97] and internal overflow. 

 
To solve these problems there are two possibilities: increase the word-length of the processors 
or/and use different filter structures (like Gold and Rader, Kingsbury and Zölzer [Zöl97], [Opp89]) 
that are less sensible to quantization and pole-zero locations than the conventional and academic 
direct forms. All of these structures are more complex than the direct form, increasing strongly the 
computational cost, and also not allowing taking advantage of the special internal architecture of 



modern DSP for these applications, like circular addressing and parallel operations. With the actual 
DSP of 24 bit fixed-point and 32 bit floating-point, the coefficient quantization is no so important 
because in general, there is enough resolution to define the filter’s frequency response and its 
effects are not annoying in audio applications. However, the effects of operations quantization and 
word-length reduction generate noise and non-linear distortion that could be audible and is 
undesirable for audio applications. Under several assumptions, with fixed-point arithmetic, this noise 
could be considered white and uncorrelated with the signal. However, using floating-point 
arithmetic, this noise depends on the signal magnitude due to the exponent value changes, and is 
somewhat correlated with the input signal and complicate to determine and evaluate a priori. In 
general, if the mantissa bit size for floating-point representation is equal to the bit size for a fixed-
point representation, the floating-point one generates lower noise levels [Opp89]. 
 
FIR filtering solutions are much less sensible to these quantization effects because the error in the 
operations is not feedbacked inside the filter structure. Besides FIR filters have several 
disadvantages that make them not suitable for real-time and live audio applications due to the high 
delay introduced when equalizing low frequencies. 
 
There are also IIR solutions to avoid the problems of low frequency IIR equalization, like double 
precision arithmetic or warpped filters [Kar99], that solve this problem, but always with an increase 
in design complexity and computational cost by a factor of three or more. 
 
 
2.- PROBLEM ESTABLISHMENT 
 
Let’s examine the problem of low frequency IIR audio equalization analyzing what happens with a 
conventional IIR second order section (SOS) digital filter.  
 
A conventional IIR SOS filter could be 
described by this transfer function H(z) : 
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that is completely described by its five 
coefficients b0, b1, b2, a1 and a2. The 
Direct Form II or Canonical filter structure 
is shown on Figure 1, where x[n] is the 
input of the filter, y[n] is the output and 
w0[n], w1[n] and w2[n] are the internal 
nodes that should be stored with a word 
length normally lower than the internal 
processor registers.  
 
We are going to focus the analysis on the recursive part of the filter D(z) since it is responsible of 
the mayor part of the round-off noise generated, due to the feedback effect. The quantization effect 
appears after each multiplication by a1 and a2 generating a noise, e[n]=e1[n]+e2[n], that is added 
to x[n] at the input of the filter. Lets G(z) be the transfer function of this error, and assuming that this 
error is not correlated with the signal, the L2 norm of this function ||G||2 is [Jur64] : 
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If a2 tends to 1, the poles are more close to the unit circle, ||G|| tends to infinite and the power of the 
quantization error increases rapidly.  

+

 z-1

 z-1

+ +

+x [n] y [n]
b0

b1

b2-a2

-a1

w0 [n]

w1 [n]

w2 [n]

Figure 1 - Direct Form II of H(z)
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Commonly, when working with IIR filters at low frequencies for audio equalization, the poles are 
near z=1. For clarifying this, let’s take a typical audio example with a parametric equalizer at 50 Hz 
with a gain of 6 dB and a Q of 2. It is used for bass enhancement or to extend the low frequency 
band of the speaker. The normalized H(s) of a parametric filter is: 
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Applying conventional bilinear transformation with a sampling frequency of 48kHz, the coefficients 
of the designed filter H(z) are : b0=1.00115154 , b1=-1.99764316, b2=0.99653440, a1=-1.99764316, 
a2=0.99768594.  Notice how a2 is really close to 1. The Figure 2 shows the magnitude frequency 
response of the digital filter 
designed H(z) and the 
quantization error transfer function 
G(z). At 50 Hz the magnitude of 
G(z) reaches 96 dB so any error 
generated will be amplified too 
much degrading the dynamic 
range and reducing the quality of 
the audio. If we observe the 
evolution of the internal nodes of 
H(z) with x[n] being an impulse of 
amplitude 1, w0,1,2[n] arrive up to 
values of 31400 needing 16 bits 
more of resolution than the input 
data to represent this values. This 
demonstrates that conventional 
Direct Form II SOS structure has 
problems to filter correctly at low 
audio frequencies, generating too 
much noise even for 24 bit fixed 
point or 32 bit floating-point DSPs.  
 
 
 
3. SOLUTION METHODS. SERIAL-PARALLEL DECOMPOSITION PLUS NOISE SHAPING 
 
Other filter structures like Gold and Rader, Kingsbury or Zölzer [Zöl96], [Opp89] have been 
developed to solve the round-off quantization noise and improve the pole-zero discrete location for 
low frequencies. However, these filter structures require more computational cost (up to three times 
or more) than the Canonical one. The solution proposed here looks for a low computational cost 
solution with improved performance for low frequency audio equalization. This requires two steps: 
 

- Use of First or Second order Noise-Shaping techniques to move the quantization noise 
at high frequencies. 

- Parallel decomposition of the filter H(z) in  H(z)=1+Hp(z)  only when Hp(z) have 
lowpass characteristic in order to filter and eliminate the noise moved at the high 
frequencies by the previous Noise-Shaping stage. 

 
 
3.1. Parallel Decomposition 
 
This easy parallel decomposition will be done only when de parallel filter Hp(z) has lowpass 
characteristic. The generic structure for this filter is shown at Figure 3. The new coefficient p will be 
1 if the filter Hp(z)=H(z)-1 has lowpass characteristic. In this case, the new coefficients of the 
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numerator will be b0’=b0-1, b1’=b1-a1 and 
b2’=b2-a2. If Hp(z) has no lowpass 
characteristic then p=0 and the filter 
remains in Canonical form. In this case the 
filter will have lowpass characteristic 
intrinsically. Table 1 shows parallel 
decomposition for common filters used in 
audio applications. S-domain has been 
used for simplicity: 
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Table 1 - Parallel Filter Decomposition H(s)=1+Hp(s) 
 
3.2. Noise-Shaping 
 
The use of Noise-Shaping is well known and 
used in oversampling converters for moving 
all the quantization noise out of the audible 
spectrum. This technique is also used in audio 
applications to distribute this round-off noise 
inside the audio band in a manner that will be 
less perceptible to the human ears, normally 
bring it to the high frequencies, [Hic95]. In this 
work we will use conventional noise shaping 
to bring all this noise at high frequencies and 
then eliminating it using the lowpass 
characteristic of filter Hp(z). 
 
To perform First Order Noise-Shaping, the 
quantization error should be feedbacked. In DSP systems the main quantization error is produced 
when the resulting operation at internal node w0[n] is stored in memory for implementing the delay 
line. Generally the word size of the memory is shorter than the internal processor’s registers. This is 
represented at Figure 4. The transfer function of the error GNS1(z) is : 
 

2
2

1
1

1

1 1
1)( −−

−

⋅+⋅+
−

=
zaza

zzGNS  

+

 z-1

 z-1

+ +

+x [n] y [n]
b0'

b1'

b2'-a2

-a1

p (0,1)

Figure 3 - Parallel Decomposition
H(z)=p*1+Hp(z)

Hp(z)

+

 z-1

 z-1

+ +

+x [n] y [n]
b0'

b1'

b2'-a2

-a1

w0 [n]

w1 [n]

w2 [n]

p (0,1)

Figure 4 - H(z) with 1st order
Noise-Shaping

Q

 z-1

difference
-



obtained adding a zero to G(z) due to the 
feedback. This new zero is only added to the 
transfer function of the error, not to the filter 
Hp(z). 
 
Second Order Noise-Shaping adds another 
zero to G(z) resulting in the filter structure of 
Figure 5. The error transfer function GNS2(z) is:  
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This new zero or zeros added to the transfer 
functions attenuate the effect of the poles at low 
frequencies. Figure 6 represents the magnitude 
of G(z), GNS1(z) and GNS2(z). With only one zero 
added, GNS1(z) improves more than 40 dB with 
low computational costs. With a double 
zero at GNS2(z), almost ideal 
performance is obtained, needing one 
multiplication and one memory more. It 
is also possible to arrive at GNS2(z)=1 if 
the coefficients of the Noise-Shaping 
are the same than a1 and a2, placing the 
complex zeros at the same location that 
the poles. 
 
Figure 7 shows the effects of applying 
Noise-Shaping to the filter moving the 
round-off noise to the high frequencies, 
and how the parallel decomposition 
H(z)=1+Hp(z), filters the high frequency 
noise by itself, providing quasy-ideal 
performance with  very low increment in 
the computational 
costs. 
 
 
 
 
 
 
 
4.- FLOATING-POINT DSP IMPLEMENTATION AND MEASURES 
 
This modified Canonical filter implementation has been tested on a TMS320C32 32bit floating-point 
DSP with 40 bit internal registers with the hardware implementation of Figure 8. This example 
shows an implementation of 
a second order allpass filter 
at 20 Hz with a Q of 3. The 
analysis is made with a FFT 
size of 65536 points with 
Hanning windowing. Figures 
9 and 10 explain algorithm 
goodness. 
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Figure 9 – Bypass of the system with 20 Hz 
input signal and Canonical implementation of 
the allpass filter degrading the signal more 
than 40 dB with noise and distortion. 
 
 

Figure 10 – Canonical implementation with 
First Order Noise-Shaping where the round-
off noise is moved to the high frequencies, 
and with Parallel Decomposition, where Hp(z) 
(bandpass) filters this noise, obtaining the 
same performance than the bypass measure. 

Table 2 shows computational cost in 
clock cycles per SOS filter for the 
algorithms implemented. With a very 
low increase in computational cost 
compared to the Canonical Form it is 
possible to improve the behavior of 
the filter at low frequencies obtaining 
quasy-ideal performance. 
 
5. CONCLUSIONS 
 
A new structure for recursive filters that reduces the round-off noise at low frequencies with low 
computational cost has been proposed, analyzed and implemented. The algorithm consists in using 
noise-shaping within the audio band together with a parallel decomposition of the digital filter. The 
resulting system improves the quality of the SOS filter arriving to quasy-ideal performance with very 
low increase in the computational cost. The filter structure remains in canonical form, so it is 
efficient to implement on DSPs taking advantage of their special internal architecture (parallel 
instructions, addressing modes, etc). The system has been tested and evaluated on a real audio 
application using a floating point DSP. 
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