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ABSTRACT 
By using the DFEM ( Direct Finite Element Method ) the sound power radiated by a vibrating body is 
calculated  from  its  outersurface  vibrational  and  geometrical  quantities  directly   means   without 
determining sound field quantities such as sound pressure or sound intensity as an intermediary step. 
By this method  the sound  power  radiated by a vibrating  plane  surface  embedding in a large  rigid 
shield can be  determined  by the  „elementary DFEM“  with  exactly  the same  result as given by the 
Rayleigh's equation  followed by a second enveloping surface integration . In this case  the vibrating 
surface is replaced by a net of discrete equivalent monopole souces and its resulting sound power is 
calculated by the sum of all single monopole powers  together with the sum of the  interaction sound 
powers from all pairs of these monopoles . But for  true 3 – dimensional sound sources both scattering 
effects and boundary conditions are to be considered additionally. In this case the elementary DFEM 
net  must  be  supplemented  by a  second   net  of  counter  monopoles  to  ensure    the boundary  
condition of  a vanishing  normal component of the  sound velocity caused by the first monopole  net . 
The magnitude of the monopoles of the second net is determined by the  one-sided  driving interaction  
between both nets . The paper shows on the one hand the derivation of this interaction effect for the 
example of  two  relevant  monopoles  and  gives  several  illustrations  of  calculated  3-dimensional 
„general DFEM“ sound power and DFEM scattering determinations. 
 
 
 
 INTRODUCTION                                                                       
          More than 20 years ago the Technical Committee 43  „Acoustics“  of ISO decided to characterize 
the noise emission of machines and equipment by its sound power. This quantity depends on distance 
and  environmental  conditions  very  weekly , contrary to the  relevant sound field quantities such as 
sound pressure and sound intensity. So sound power is a true machinery  specific quantity.  
Consequently in the mean time under the roof of this ISO committee several sound power measure- 
ment  procedures  are  developed  and issued  both  based on sound pressure  and later on using  
sound intensity determination  ( ISO 3740  series,  ISO 9614 , part 1, 2  and 3 ). Furthermore  ISO TR  
7849  gives an experimental airborne sound  power  determination by the measurement of the relevant  
machine  outersurface structure borne velocity components.                                      
         Regarding the  corresponding development in relevant  numerical methods  two different  tracks  
can be recognized. 
         The   well  known first method  determines  the  radiated  airborne  sound  power  by two  steps.  
At  first  the  Boundary  Element  Method ( BEM ) is used  to calculate relevant air  borne sound  field  
quantities such as sound   pressure , velocity or intensity  caused  by the source in a free  field space  
along several positions on a surface S  enveloping   the source, where S preferably  is situated in the  



enveloping
Surface S

.

.

.

.

.

.

.

.

.
.

.
. i

j

 fieldpoint

far field . For baffled  plane sources the use of  the Rayleigh-integral  instead of BEM is of  significant  
advantage . Then  by the next step  the relevant  field  quantities  were  integrated by the  well known  
relationships along the enveloping surface S yielding the sound power finally. 
          The second method determines the sound power without any airborne sound field quantity cal- 
culations. The so called Direct Finite Element Method ( DFEM ) determines the air borne sound power  
directly in one step from the source  vibration  quantities only together  with  geometrical  source  data. 
This  method  was issued  several  years ago  both for  baffled  plane sources [1], [2] and later on was  
developed, tested and approved for true 3-dimensional sources [2-6]. 
               Furthermore a sound power measurement procedure was developed  based on  the general  
DFEM Algorithm [2], [7].  
               Most of the papers dealing with DFEM are issued in German language. This fact together  
with the publication at very  different places over a time interval of more than one decade may be a  
reason that at present this method is not very familiar . Therefore  this paper  intends to summarize 
and to explaine the main DFEM aspects supplemented by specific references. 
 
 
 
BASIC PHILOSOPHY OF THE DFEM ALGORITHM 
Introducing the DFEM we regard a system of N different individual sound sources arbitrarily positioned  
in a free space enveloped by the surface S (fig.1). These sources may have different radiation pattern  
in respect to directivity and frequency spectra. Based on the principle of superposition the intensity  
component In normal to S effective at each position on S is given by 
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where the pi and vi,n are the sound pressure and normal component of the sound velocity radiated by  
the i-th source effective in absence of all other N-1 sources . Having integrated In over S  the  total   
sound power PΣ  of the source system yields 
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This means PΣ  is given by the sum of all single sound powers iP  and a sum of all interaction sound 

powers ilP . 

                  Finally the iP  and ilP  can be expressed by the sound source quantities. As an example this 
should be shown for  the source system consists of monopole sources only. In this case we have *)  

with the space angle iΩ =4π and where ρ c is the 

characteristic acoustic impedance in air, k=2πf/c 
the   wave  number ,  ∆Si , ∆Sl   the   individual 
monopole surface areas, ,i lv v% %  the rms values of 

the monopole velocities, ϕil the relative monopole 
phases  and  dil  the  distances  between  the i-th 
and   the    l-th    source  .  Similar    description  
expressing iP  and ilP  for several different source 
types  e.g.  for  systems   with   dipoles ,  mixed                           
monopole / dipole  systems and  systems   with 

        Fig.1 System of individual sources.         spherical sources of  different orders can be found in [9]. 
-------------------------------------------------------------------------------------------------------------------------------------- 
*) Close to the physics of air borne sound radiation the eqs.(3) can be formulated frequency    

independently by replacing 
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               Introducing  eqs.(3) into (2)  the aim of  DFEM  is obtained:   The  radiated  airborne  sound 
power is  expressed  by sound source quantities only such as source  frequency f , sourcesvelocities 

iv% , areas  ∆Si  and  source   phase  relatioships  together with the  geometrically determined source 
distances dil and ρ c characterizing the gas quality in which the sound propagates. Consequently the 
airborne sound field quantities are not necessary for the DFEM airborne sound power determination . 
The one step determination requires source and geometrical (dil) quantities only. 
 
 
DFEM SOUND POWER DESCRIPTION FOR BAFFLED PLANE STRUCTURE BORNE SOURCES 
-THE „ELEMENTARY DFEM“ 
      For such sources the DFEM replaces its vibrating surface by a net of equivalent monopole sources 

radiating into the half-space and 
determines the radiated sound power 
by eqs.(2) and (3) with iΩ =2π. 

For this the sound flows i iv S∆% yields 
by the discretization of the true 

( )nv S% distribution.  
             The evidence of the DFEM 
determined sound power of baffled 
plane sources  was  shown  both by 
comparising  with  exact  analytical 
solutions of several specific examples 
( baffled vibrating strips, piston diaph- 
ragm and plates of different vibration 
orders [9], [5] ) and was basicaly 

Fig.2 Related radiation efficiency σ# of a zero order vibrating      proofed [4], [8] by a derivation starting 
     strip determined by DFEM with different discretization N.       with  the  far field   sound pressure 

determination by the Rayleigh’s equation continued    by a hemisperical surface integration of 21 p
cρ

%  

for a radius R→∞. The DFEM result refered to the Rayleigh-equation derivation-track  is exact so long 
as the chosen density of discretization is large enough related to the relevant air borne wavelength λ 
respectively to the upper frequency limit fmax of interest. Criteria e.g. for a zero order vibrating strip with 
the length L: the number monopoles N should fulfill N>(L/λ)max respectively N>fmaxL/c (see fig.2). 
 
 
 
DFEM DESRIPTION OF SCATTERING EFFECTS - THE ONE-SIDED DRIVING INTERACTION 
          Our first equation (3) describes the monopole sound power P radiated under ideal free field  
conditions. Now we regard the deviation of this sound power, if a scattering body is situated in the 
vicinity of the source M, as shown by figure 3. Thereby we assume the monopole M with constant  
sound flow 

0 0q Sv= ∆ % . By the following the solution of this problem is described by using the DFEM. 
Further relevant details are given by [3].  
        The free field sound velocity vi radiated by the monopole M don’t fulfill the rigid body boundary 
condition by its normal component vn,i  at any i-th location on the body’s surface S in general (fig.3). 
Therefore the DFEM locates an additional net of imaginary counter monopoles on S having sound  
velocities vi

c to ensure for each i-th position 
 
                                                      vn,i + vi

c = 0                                                                                  (4) 
Consequently these counter sources have sound flows 
 

                                      , cosc
i n i i i i iq v S Sβ= − ∆ = − ∆v                                                                (5) 

where ∆Si is the portion of the area S refered to the mesh of the i-th counter source and βi  the  angle 
between the free field velosity vi and the vector ni normal to surface S at the i-th position. 
               The deviation of sound power P0 caused by the scattering effect is determined by the one- 
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                         Fig.3  Field situation for a monopole in the vicinity of a rigid body S. 
sided  interaction  between  the M monopole  sound  power  P0  with q0 and  the  Mi  counter sources  
characterized by qi

c. The description of this  situation  follows  the equation (2) and (3) on principle but 
must be modified in order to consider the specific one-sided effect (details see [2], [9]). 
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         Fig.4   Integration surfaces for a pair of                Fig. 5  Integration surface S1 for the one sided 
                         monopoles 1 and  2                                                                effected influence 
 
              For this modification at first we regard a single pair of  monopoles  being  separated by the  
distance d, having a phase difference φ12 and constant sound flows q1 and q2. The well known total  
sound power of these two sources is given by  

                                                 1 2 1 2 12

sin( )
2 cos

kdP P P P P
kd

φΣ = + +                                         (6) 

 with symbols as explained before. This sound power PΣ usually is derived by integrating sound  field  
quantities over a sphere with radius R enveloping both sources ( fig.4 ) . On the other hand the one-
sided influence is defined by the change of  one  of the monopole powers, e.g. of P1, caused  by the 
presence of the other one . Therefore the relevant sound field quantities must be integrated over the 
smaller sphere with radius r1 (fig.4-5). This integration carried out e.g. for the monopol 1 yields to ( see 
[2], [9] ) 
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          For the  scattering  problem  as illustrated  by  fig.3  further  development  of equation  (7)  is  
necessary . At first P1 is replased by the power P0 of our  primary source M and the  P2  by  the i-th  
counter source power  
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where the counter sound flow c
i iv S∆  is determined by the driven velocity vn,i caused  by  the  primary 

monopole M which at the i-th position is given by  
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 and finally  
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The phase φ12 from equation (7) is determined by the retardation caused by wave propagation from M 
to the i-th point on S (fig.3) with  
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Introducing P0 for P1, Pi  according eq.(10) for P2 and φM i with eq.(11) for φ12 into eq.(7) the one-sided 
driven deviation ∆i of the sound power P0 caused by Pi yields 
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The sound power deviation totally caused by the entire scattering body follows 

                                                              
1

N
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          One example of this scattering effect is the change of the monopole sound power caused by a  
rigid rectangular plate with a size limited by 2Lx and 2Ly   being situated in a distance D. As a reference 
for this example we regard the relevant well known results for a plate unlimited in size (2Lx , 2Ly  →∞) 
with 
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As expected for higher frequences, increasing Dk∼D/λ and (Lx;Ly )k∼(Lx;Ly )/λ the DFEM determined  

∆tot approximates the tot
∞∆  very well and for lower frequencies, means smaller wavelength λ related to 

the geometric quantities D; Lx; Ly as expected significant differences between these two theoretical  
deviations can be realized (fig.6 and 7). Further DFEM solutions for other scattering objects, such as  
circular plates and rigid sphere are given by [2]. 
 

 
   Fig.6 and 7.  Related sound power deviation ∆tot /P0 caused by scattering on a rectanular rigid plane 
 
 
 
DFEM FOR SOUND POWER DETERMINATION OF 3-DIMENSIONAL SOURCES 
– THE GENERAL DFEM  

       A monopole located in the „north-pole“ of a rigid sphere with the outersurface S generates  „free“ 
sound velocity  components  vn,i  normal  to S different of  zero if the  sphere’s surface S is assumed  
imaginary means being previous to sound (see fig.8). But for increasing the spheres’s radius  r0  the 
component  vr,i  decreases  and  vanishes  for  r0 →∞ . Means  for a  plane  sources  we  have vn,i=0  
automatically. Continuing the discussions of the preceding chapter for the 3-dimensional sources a net  
of imaginary  counter  monopoles  is necessary  to fulfill  the  boundary  conditions on S for the  true  



existing rigid  sphere  outside the  „north-pole“. All earlier derivation of  the scatter  problem are still 
usable  to determine  the  counter  monopoles  when  moving  our  monopole M of fig. 3 close to the 
surface S (di→0) and changing the angle faktor 1/4π into 1/Ω i where for plane baffled sources counter 
sources are not necessary. For the  Ω i determination of arbitrarily shaped 3-dimensional sources 
reference is given to [4], [6].  
            Finally the general DFEM sound power determination of the 3-dimensional sound sources 
consists of  
-     generation of the inputs : 
by discretization of the  actually given structure borne velocity vn(S) in respect to the amounts and 
phases  accompanied by fixing the coordinates and angles of ∆Si positions the primarily monopole net  
is generated 
-     realization of the algorithm: 
the sum of all single monopole sound powers, the sum of their interaction sound powers both for the  
primarily net and secondly generated the net of counter sources has to be calculated. 
          The DFEM Algorithm was checked on a very broad basis 
-     (1) by comparison the sound power determined by DFEM with results of plane and 3-dimensional 
sources allowing exact analytical solutions, see references [8], [4], [5], [9]. 
-     (2) by using the DFEM Algorithm for a sound power measurement procedure and checking these 
results with sound powers determined by a sound intensity measurement procedure (ISO 9614), see  
references [2], [5-7], [10,11]. 
                For both tests the oral presentation will show several examples. These tests show excelent 
agreements whereby DFEM avoid any singularity problems.  

 
         Fig.8  Sound field situation for spherical sound sources different in radius r0 
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