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ABSTRACT 

When a train goes round a curve, a transverse friction force may act between the wheels and 

the rail in such a way that the wheels are excited to perform bending oscillations and to radiate 

squeal noise. This phenomenon has been modelled theoretically and simulated numerically. 

Each wheel is described by a superposition of bending modes. It is excited transversely by a 

stick/slip friction force, which depends nonlinearly on the wheel velocity. The growth rates of 

individual wheel modes are calculated, revealing the linearly unstable modes. The time history 

of the oscillation is also calculated, revealing the modes that form the limit cycle.  

 

INTRODUCTION 

Curve squeal of trains is generated if a train traversing a bend performs a crabbing motion with 

its wheels because they cannot align themselves tangentially to the rail. As a consequence of 

this crabbing motion, a dry friction force acts laterally at the wheel/rail contact. The friction force 

excites bending oscillations of the wheels, and the wheels then radiate sound into the 

surrounding air. The frequency spectrum of the squeal sound contains one (or a few) sharp 

peaks, and each peak corresponds to the resonance of a certain bending mode of the wheels. 



Curve squeal is an example of a friction-driven oscillation, where the friction force oscillates in 

rapid succession between sliding friction (slip) and sticking friction, giving rise to a limit cycle of 

stick/slip oscillation. The aim of this paper is to shed some light on the criteria by which a 

particular mode (or set of modes) is selected for the limit cycle of a given wheel. 

 

THE GOVERNING EQUATIONS 

The free wheel is assumed to be a linear system, therefore the transverse displacement w of 

the friction-driven wheel (see Heckl and Abrahams 2000) is given by  

`         

( , )r �  is an observer point on the wheel and ( , )� �r �  is the contact point with the rail where the 

friction force acts. t  is the observer time and t  are all the moments in time at which the friction 

force acts on the wheel.  v  is the wheel velocity and F v ) is the friction characteristic. G , the 

Green's function, is the displacement response of the free wheel to an impulse point force 

acting at (

�

(

, )� �r � . 

 

The friction characteristic F v  describes the feedback between the wheel oscillation and the 

friction force driving this oscillation. F v  is assumed to be the piecewise linear function given by 

( )

( )

              

�  denotes the (positive) slope of the slip section; it can be seen as a "negative damping 

coefficient" associated with sliding friction. �  is the (negative) slope of the stick section. F  is 

the value of the friction force where v ; in physical terms it is a measure of the normal force 

(due to the weight of the wheel and/or train) that acts on the contact point. 

0

� 0

V  is the value of the 

wheel velocity where F � 0; in physical terms it is the crabbing speed. The critical velocity v , 

where the change-over from slip to stick occurs, is given by 

c

v F Vc � � �( ) (0 � � )� . �V , given 

by � ��(V V F� �( ) )� �0 , is a measure of the narrow velocity interval that encloses the stick 

section of the friction characteristic. The friction characteristic given in (2) is a piecewise linear 

approximation of a typical measured curve. It is also close to the friction characteristic used in 



early models of the bowed violin string (McIntyre and Woodhouse 1979). The bow speed and 

normal force due to pressure on the bow correspond respectively to the crabbing speed V  and 

the normal force F .  0

mn

The Green's function characterises the free wheel, i.e. the wheel that is merely held by the axle 

without making contact with the rail. It is a superposition of the bending modes of the wheel, 

 

 

 

� �mn mn g, and  are respectively the frequency, loss factor and amplitude of mode ( . 

The integers m  and n  denote the number of nodal lines and nodal circles, respectively. The 

Green's function components can be determined experimentally by exciting the free wheel with 

an impulse point force and then measuring the time history of the resulting motion. The 

frequency, loss factor and amplitude of each mode are then inferred from the measured time 

history. The loss factors are assumed to include any relevant damping mechanisms, such as 

radiation losses and various forms of internal damping. This experimental approach is possible 

for wheels of any geometry. For wheels of simple geometries, the frequencies and amplitudes 

of the Green's function can be calculated theoretically. 

, )m n

 

If equation (1) is combined with (3) and evaluated at ( , ) ( , )r r� �� � � , one obtains the governing 

equation for the wheel motion at the contact point. This can be solved analytically as an 

eigenvalue problem for the special case of a purely linear friction characteristic, given by 

F v F v( ) � �0 �  for the whole velocity range; this gives the modal frequencies and growth rates 

 (Heckl 2000), and also the time t  it takes an unstable mode (  to reach the critical 

velocity v . If the friction characteristic is nonlinear, as given in (2), the governing equation can 

only be solved numerically; this gives the time histories of wheel velocity and friction force. 
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NUMERICAL RESULTS 

Numerical simulations were performed for a friction characteristic given by equations (2a,b) with 

� � 15 000 Ns / m (slope of the slip section), � �  (slope of the stick section), �100 000 Ns / m

V � �
�50 10 6 m /

vc � �
�34 2 10 6. m

s

/

 (crabbing speed), F  (measure of normal force). This gives 

 for the critical velocity, where the oscillation changes from slip-only to 

stick/slip. 

0 � 107. N

s

 

The wheel used in the simulations is a model wheel, made from steel; it has the shape of a flat 

circular disc with a hub at the centre and has measurements d  (wheel thickness), 

 (wheel radius),  (hub radius). Its eigenfrequencies � , Green's 

function amplitudes g  (which are pure imaginary), and loss factors �  are listed in Table 1.  

� 0 003. m

mn

a � 0 038. m b � 0 010. m mn

mn

 
     �       I ]      �  ( , )m n �mn [ ]2 1s� m( ) [gmn 10 9� m / Ns mn
 
 

1 1� �

(0,1)        3020   1969     0.07 
 (1,1)        2922   4124       0.07 
 (2,1)        3655   3472   varied 
 (3,1)        6482   2141   varied 
 (4,1)      10980   1409   varied 
 
      Table 1   Properties of the free wheel  
 

The mode pair (2,1)/(4,1) is nearly harmonically related, � , but none of the other 

mode pairs are. Only the first five modes (m ) have eigenfrequencies within the 

range of audible frequencies, and only those modes are included in the numerical simulations 

presented here. They all have just one nodal circle, which coincides with the edge of the wheel 

hub. 

�41 213�

n � 1� 0 4, ... ,

The numerical simulations focus on the three modes (2,1), (3,1) and (4,1) and investigate their 

interplay under nonlinear conditions. Their modal loss factors are varied in order to simulate 

different degrees of instability. The other two modes have a high loss factor and are stable 

throughout . The simulation results for four representative 

cases are listed in Table 2. 

( , )� �01 111200 600� � � �s s

 
 
 



 
�21      �    �    � ]       t    t    t�31 �41 21

1[ ]s� 31
1[ ]s� 41

1[s� 21
310[ ]� s 31

310[ ]� s 41
310[ ]� s  

 
0.0400 0.0040  0.0400 -304     494        -203        -  5.44                    - 
0.0400 0.0040 0.0050 -304     493         381        -  5.45  8.19 
0.0400 0.0040  0.0018 -304     493         602        -  5.45  5.18 
0.0100 0.0400  0.0100  403    -978           37      5.09     -            83.87 
 
Table 2   Loss factors � , linear growth rates � and growth times t  of cases 1 to 4 
 

One Unstable Mode (Case 1 in Table 2) 

The time history corresponding to case 1, where mode (3,1) is unstable ( ) is shown in 

the figure below. 

�13 0�

0 0.002 0.004 0.006 0.008 0.01
time @sD

-60

-40

-20

0

20

40

60

v
@1

0-
6
m
ês
D
Hs

ol
id

cu
rv

eL
,

F
@0

.0
4N
D
Hd

as
he

d
cu

rv
eL

 

Many more time histories have been calculated for other wheels with one mode, say mode 

, unstable on its own. These time histories share the same features: initially, there is an 

exponential amplitude growth with rate � , then there is a slower growth followed by a limit 

cycle with the frequency �  and limit cycle amplitude 

( , )m n

mn

mn V  (crabbing speed). 

 
Two Unstable Modes, Not Harmonically Related (Cases 2 and 3 in Table 2) 

The time histories (not illustrated) show that in case 2 (t ), mode (3,1) forms the limit 

cycle, and in case 3 (t ), mode (4,1) forms the limit cycle. Many more simulations have 

been made, and they show that if there are two unstable modes that are not harmonically 

related, the limit cycle will be formed by one of them. The crucial factor that selects this mode is 

the time it takes for the velocity of this mode to reach the critical value where the friction force 

t31 41�

t41 31�



becomes nonlinear. The situation is very much like a race between the unstable modes 

competing for the limit cycle, which is won by the mode that reaches the critical value in the 

shortest time. A high linear growth rate and a large Green's function amplitude are the features 

that allow a short growth time. The limit cycle establishes quickly if there is a big difference 

between the growth times; if the two growth times are quite similar, the transition into the limit 

cycle is not smooth, and may take a long time. 

Two Unstable Modes, Harmonically Related (Case 4 in Table 2) 

The two modes (2,1) and (4,1) are harmonically related (� ). This allows their 

coexistence in the limit cycle (not illustrated). Two such modes can coexist in the limit cycle with 

the lower mode dominating, but not with the higher mode dominating. The presence of the 

higher mode in the limit cycle is most pronounced if the frequency ratio is 2:1, and it becomes 

less pronounced with increasing frequency ratio. The modes have to be exactly or very nearly 

harmonically related in order to coexist in the limit cycle. If the deviation between the actual 

frequency of the higher mode and the exact harmonic is more than � , coexistence is not 

possible. 
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CONCLUSIONS 

This paper has examined curve squeal by modelling a wheel driven by a piece-wise linear 

friction characteristic, which is typical for stick/slip oscillations.  

 

Curve squeal can be eliminated if the unstable amplitude growth can be prevented. This has 

been achieved in practice by increasing the wheel damping (equivalent to increasing the modal 

loss factors in our model). It has also been achieved by applying lubrication to change the 

properties of the wheel/rail interface in such a way that the slope of the increasing section of the 

friction characteristic is lessened (equivalent to changing the friction characteristic in our model 

in such a way that the gradient of the slip section is reduced). Curve squeal can be reduced in 

intensity by reducing the train speed and by increasing the curve radius; both measures reduce 

the crabbing speed which, according to our model, determines the velocity maximum of the limit 

cycle.  
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