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ABSTRACT 
 
We consider the propagation of acoustic waves in weakly nonlinear barotropic fluids when the 
density fluctuations are small by means of asymptotic methods for low Mach numbers and show 
that, depending on the coefficient that multiplies the nonlinear dependence of the pressure on 
the density, one can obtain Love’s equations of elasticity, the equations for the propagation of 
sound in fluids containing bubbles, the nonlinear acoustics equations previously derived by 
Crighton, Lesser and Seebass, cnoidal waves, and topological solitons. Some numerical 
simulations that illustrate the propagation of acoustic waves in nonlinear barotropic fluids are 
presented.   

  

 
RESUMEN 
 
Se estudia la propagación de ondas acústicas débilmente no-lineales en fluidos perfectos 
barotrópicos cuando las variaciones de densidad son pequeñas por medio de métodos 
asintóticos a bajos números de Mach, y se muestra que, dependiendo del coeficiente que 
define la no-linealidad de la presión con la densidad, se obtienen las ecuaciones de Love de la 
teoría clásica de elasticidad, las de propagación del sonido en fluidos con burbujas y las 
ecuaciones de acústica no-lineal de Crighton, Lesser and Seebass, así como la existencia de 
ondas cnoidales y solitones topológicos. 
 
 
INTRODUCTION 
 
There is a vast literature on models of nonlinear acoustics, especially in one-dimensional 
domains and for weakly nonlinear media [1-4]. In such media, when nonlinearities are balanced 
by dispersion, solitary waves of permanent form that interact like particles, i.e., solitons, may 
appear, and completely integrable systems, e.g., the Korteweg-de Vries equation, characterized 
by an infinite number of conservation laws may occur. When the balance or governing 
equations contain dissipation terms, there may be only a finite number of conservation laws and 
dissipative solitons characterized by a balance amongst nonlinearities, dissipation, and 
dissipation may occur [5,6]. 
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The purpose of this paper is several-fold. First, we present a one-dimensional model of weakly 
nonlinear compressible flows which is valid for gases and liquids and which is characterized by 
a barotropic approximation whereby the pressure is a quadratic function of the density. Second, 
by employing an asymptotic expansion for small Mach numbers, we derive a nonlinear wave 
equation for the velocity potential which contains a mixed fourth-order derivative and two 
quadratic nonlinearities. Third, we present a second-order accurate finite difference method in 
both space and time to solve the leading-order equation that results from the asymptotic 
analysis. Fourth, we solve numerically one-dimensional nonlinear dissipative and dispersive 
equations in order to illustrate the propagation of pressure pulses in one-dimensional barotropic 
media. 
 
  
FORMULATION 
 
In this paper, we consider a homoentropic flow of a lossless compressible fluid in one-
dimensional space and in Eulerian coordinates. By neglecting the body force, assuming a 
unidireccional velocity field (u(x,t),0,0) where x and t denote the spatial coordinate and time, 
respectively, taking into account that the flow is irrotational and introducing the velocity 
potencial, one can write the continuity and linear momentum, i.e., Euler’s, equations; the latter 
provides the fluid acceleration in terms of the pressure gradient for inviscid fluids. In this study, 
however, the inviscid Euler’s equation contains a source term which depends on the fluid’s 
density and velocity.  
 
The two-equation system formed by the one-dimensional continuity and modified linear 
momentum equation is not closed, for it contains the density, pressure and velocity. However, 
for barotropic fluids characterized by a thermodynamic pressure that depends in a quadratic 
manner on the difference between the density and its equilibrium value, the system is closed. 
This quadratic dependence of the pressure on density includes both linear and nonlinear 
contributions; the linear contribution is akin to that found in isothermal flows of ideal gases, 
while the quadratic dependence on pressure results in a very interesting dynamical behaviour 
as shown in the next paragraphs. 
 
By non-dimensionalizing the governing equations with respect to a characteristic length and a 
characteristic velocity, time with respect to the adiabatic acoustic time, i.e., the ratio of the 
length scale to the adiabatic sound speedy, and the density as the ratio of the density difference 
between the current density and the equilibrium value to the latter, it is an easy exercise to 
show that the resulting non-dimensional continuity and linear momentum equations contain the 
Mach number and a parameter that characterizes the nonlinear terms that have been 
introduced into the modified Euler’s equation and that correspond to an averaged Euler’s model 
of compressible flows in lossless fluids. Such a parameter is considered to be small in the 
weakly nonlinear formulation presented in this study.  
 
By assuming that the nondimensional density difference is on the order of the Mach number 
which is, in turn, assumed to be also small and expanding the velocity potential in an asymptotic 
Poincaré expansion in terms of the Mach number, one can derive after some tedious and 
lengthy algebra, the following nonlinear equation 
 
Ψxx – Ψtt + A Ψxxtt = α [2 (θ – 1) Ψt Ψxx + (Ψx)

2
t],  (1) 

 
where Ψ(x,t) is the velocity potential, α is the Mach number, (θ – 1) denotes the coefficient that 
multiplies the square of the density in the barotropic equation of state, and A is the 
nondimensional coefficient that multiplies the nonlinear terms introduced in the (modified) 
inviscid Euler equation. It must be noted that in the above equation A = O(α) and, therefore, 
terms of order α have been kept in the leading-order equation. If these terms are neglected, the 
above equation reduces to the well-known one-dimensional linear wave equation, i.e., Ψxx – Ψtt 
= 0. On the other hand, by taking the limit α → 0, the above equation reduces to Love’s 
equation of classical elasticity theory and the inviscid van Wijngaarden’s equation for sound 
waves in bubbly fluids [5]; in this case, A is related to the bubble radius. Moreover, the limit A → 
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0 yields the weakly nonlinear acoustic wave equation also known as the Crighton-Lesser-
Seebass equation [7,8]. 
 
It must be pointed out that, in the derivation of the above equation, we have kept two 
regularization terms, i.e., the third term in the left and the term in the right hand side of the 
equation, which are on the order of the Mach number which was assumed to be small. These 
two terms have been retained in order to obtain a nonlinear wave equation, for their neglect 
would have resulted in the well-known one-dimensional wave equation which is neither 
dispersive nor nonlinear. 
 
The above equation is invariant under mirror reflections in x, and translations in either t or x. 
The x → - x invariance implies that we only need consider right-travelling wave solutions, i.e., 
solutions characterized by Ψ(x,t) = F(ζ) where ζ= x – c t and c is the wave speed. Using this 
transformation, the leading-order equation for the velocity potential becomes a fourth-order 
nonlinear ordinary differential equation which can be integrated analytically once. By introducing 
G = F’ where the prime denotes differentiation with respect to ζ, a nonlinear second-order 
ordinary differential equation results. This equation has cnoidal wave solutions which are 
bounded periodic functions, travelling wave solutions of the sech-squared type, and kink or 
topological solitons of the hyperbolic tangent type [9].  
 
 
NUMERICAL METHOD 
 
The nonlinear leading-order wave equation presented in the previous section does not, in 
general, have analytical solutions except for the conditions mentioned in the last paragraph; 
therefore, its solution must be obtained numerically. In this paper, such an equation was solve 
as follows. First, the following dependent variable 
 
Φ = Ψt,          (2) 
 
which allows to write the nonlinear wave equation (1) as  
 
Ψxx – Ψtt + A Ψxxtt = α [2 (θ – 1) Φ Ψxx + Ψx Φx],     (3) 
 
Is introduced and then Equations (2) and (3) are linear in  Φ  and Ψ, respectively, i.e., if  Φ were 
known, Ψ could be determined from Equation (3). Equations (2) and (3) are, however, coupled, 
and must, therefore, be solved in a coupled manner. 
  
In this paper, Equations (2) and (3) were discretized by means of second-order accurate finite 
difference techniques in both space and time in infinite domains subject to radiation boundary 
conditions [10]. Because of the presence of the second-order derivatives and the use of three-
time level finite difference equations, the resulting numerical method is not self-starting; the 
value of the velocity potential at the first time level was obtained by means of a (second-order 
accurate) Taylor series expansion in terms of  Ψ(x,0) and Ψt(x,0), and the resulting system of 
nonlinear algebraic equations was linearized with respect to the previous time level, so that a 
system of linear algebraic equations was obtained. This system has a tridiagonal matrix which 
can be easily inverted by means of the Thomas algorithm. 
 
 
RESULTS 
 
The numerical method presented in the previous section was not only used to solve Equations 
(2) and (3) which correspond to a unidirectional lossless barotropic fluid for which some 
analytical solutions were described in the section on Formulation. It has also been applied to 
study acoustic wave propagation in dissipative and dispersive media.  
 
Figure 1 illustrates the interaction of two pressure pulses in a dispersive and dissipative media. 
In the absence of dissipation, the two pressure pulses preserve their identity and behave as 
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solitons upon interacting or colliding with each other. However, in the presence of dissipation, 
their amplitude decreases with time, their (x,t) trajectory is curved, and their width increases. 
The interaction of two pressure pulses in dissipative media such as the one illustrated in Figure 
1 indicates that the curvature of the smaller pressure pulse is smaller than that of the larger one 
and that, their interaction is characterized by a local increase of amplitude. The results 
presented in Figure 1 also indicate that the amplitude of the two pressure pulses decreases 
after the interaction, although the two pressure pulses emanate from such an interaction as if 
they were particles moving in a dissipative media, and may, therefore, be referred to as 
dissipative solitons.  

 
Figura 1. Interaction of two pressure pulses in a nonlinear dissipative and dispersive medium. 

 

 
Figura 2. Propagation of a pressure pulse in a nonlinear dispersive media and front formation. 
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Figura 3. Propagation of a pressure pulse in a nonlinear dispersive media, front formation and tail 

dissipation. 

 

 
Figura 4. Propagation of a pressure pulse in a nonlinear dispersive media, front formation and tail 

dissipation. 
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Figure 2 illustrates the propagation and front steepening of a pressure pulse in a nonlinear 
dissipative media. Because of the dissipation, the amplitude and width of the pressure pulse 
increase, while the nonlinearities cause the steeping of the front. Pressure pulses of larger 
amplitude than the one illustrated in Figure 2 would result in a larger steepening at the pulse 
front, but no shock wave would result because of the finite viscosity/dissipation of the medium.  
 
The results presented in Figure 3 clearly illustrate that, as the initial amplitude of the pressure 
pulse is increased, the front steeping may not grow as quickly as in Figure 2, but the pulse width 
may increase and result in a broader pulse whose amplitude exhibits an initial drop analogous 
to that of the initial pulse followed by a much smoother drop to a zero value downstream.  
 
Figure 4 shows that, for large initial amplitudes of the pressure pulse, the initial propagation is 
similar to the one illustrated in Figure 3. However, at larger times, the steepening at the wave 
front which is enhanced by nonlinearities is damped away by dissipative effects, while the 
pressure pulse becomes wider as time increases. 
 
The results presented in Figures 1-4 and others not presented here clearly show that the 
acoustic wave propagation in nonlinear media depends on the nonlinearities of the barotropic 
equation of state, the Mach number, and the nonlinearities, dispersion and dissipation. When 
the nonlinearities balance dispersion in a non-dissipative medium, soliton-type solutions may be 
found. With some abuse of language, it may also be stated that one may observe dissipative 
solitons in nonlinear dispersive and dissipative media under certain conditions. However, even 
in weakly nonlinear media, dispersion tries to steepen the wave front, while dissipation causes a 
decrease of amplitude and an increase of the width of the pressure pulse.  
 
 
CONCLUSIONS 
 
A one-dimensional model of barotropic fluids based on an averaged Euler lossless model that 
includes a nonlinear term in the inviscid Euler equation and employs a quadratic dependence of 
the thermodynamics pressure on the density has been analyzed asymptotically for small Mach 
numbers and small nonlinearities of the pressure dependence on the density. It has been 
shown that the leading-order equation in the Mach number is the well-known wave equation, but 
its regularization yields a nonlinear wave equation which includes Love’s equation of elasticity, 
the nonlinear acoustics equations previously derived by Crighton, Lesser and Seebass, cnoidal 
waves, and topological solitons for different values of the two nondimensional parameters that 
appear in the nondimensional equation for the velocity potential . 
 
A non-self-starting second-order accurate linearized finite difference method for the leading-
order equation of the velocity potential has been proposed and used to determine the 
propagation of acoustic pulses in a nonlinear, dispersive and dissipative media. 
 
It has been shown that dispersion causes a steepening of the pressure pulse, whereas 
dissipation decreases the pressure amplitude and increases the width of the pressure pulse. 
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