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Abstract
This work presents the different possibilities to obtain perfect absorption in reciprocal ventilated problems,
i.e., in the situation in which both reflection and transmission are considered. By using the scattering matrix
formalism, the perfect absorption is obtained when the critical coupling conditions are fulfilled, i.e., when
the two eigenvalues of the scattering matrix are zero at the same frequency and the system is excited with
the corresponding eigenvector. These conditions impose that only two types of mechanisms can be used to
obtain perfect absorption: (i) breaking the symmetry by using non-symmetric resonators or (ii) maintaining the
symmetry, but using degenerate resonators. We show two systems made of Helmholtz resonators presenting
perfect acoustic absorption, each based on each solution. The systems are analytically, numerically, and
experimentally characterized with a very good agreement between them, thus opening new venues for the
design of acoustic treatments at low frequencies.
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1 Introduction

The ability to perfectly absorb an incoming wave field by a sub-wavelength material is advantageous
for several applications in wave physics. This challenge requires to solve a complex problem: reducing the
geometric dimensions of the structure while increasing the density of states at low frequencies and finding the
good conditions to match the impedance to the background medium. A successful approach for increasing the
density of states at low frequencies with reduced dimensions is the use of metamaterials. Several possibilities
based on these systems made of open lossy resonant building blocks have been proposed to design sound
absorbing structures which can present simultaneously sub-wavelength dimensions and strong acoustic
absorption [1, 2]. Among them, Helmholtz resonators (HRs) have been shown as potential candidates to solve
the problem due to the tunable possibilities they offer [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

In this talk we want to pay attention to the possibilities provided by the acoustic metamaterials to perfectly
absorb waves with deep sub-wavelength dimensions in the ventilated problem, i.e., in a transmission problem
in which we consider both reflection and transmission. From a general point of view, the perfect absorption can
be analyzed from the interaction of an incoming wave with an open, lossy and resonant structure. In particular
the impedance matching with the background field, is one of the most studied process in the field of wave
physics [11, 12, 13]. These open systems, at the resonant frequency, are characterized by both the leakage rate
of energy (i.e., the coupling of the resonant elements with the propagating medium), and the intrinsic losses of
the resonator. The balance between the leakage and the losses activates the condition of critical coupling (or
impedance matching condition), trapping the energy around the resonant elements and generating a maximum
of energy absorption [3, 14]. In the case of transmission systems, degenerate critically coupled resonators with
symmetric and antisymmetric resonances or systems with broken symmetry can be used to perfectly absorb the
incoming energy.
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2 Theoretical framework

Let us consider a two-port, one-dimensional and reciprocal scattering process. The relation between the
amplitudes of the incoming (a, d), and outcoming (b, c) waves, on both sides of an asymmetric (non-mirror
symmetric) scatterer Σ, is given by c

b

 = S( f )

 a

d

 =

 T R+

R− T


 a

d

 , (1)

where S( f ) is the scattering matrix (S-matrix), f is the incident wave frequency, T is the complex transmission
coefficient, R− and R+ are the complex reflection coefficients for left (−) and right (+) incidence, respectively.
In this work, the time dependence convention of the harmonic regime is e−iωt, and it will be omitted in the
following. The eigenvalues of the S-matrix are expressed as λ1,2 = T ± [R−R+]1/2 and the eigenvectors of the
system are v1 = (v11, v12) =

(
R+,−

√
R+R−

)
and v2 = (v21, v22) =

(√
R+R−,R+

)
. Therefore, the ratio of the

eigenvector components v1i and v2i is v2i/v1i = (−1)i(R−/R+)1/2. A zero eigenvalue of the S-matrix corresponds
to the case in which the incident waves can be completely absorbed (b = c = 0). This, called coherent perfect
absorption (CPA) [15], happens when T = ±[R−R+]1/2 and the incident waves a, d correspond to the relevant
eigenvector.

If the scatterer Σ is mirror symmetric, R+ = R− ≡ R and the problem can be reduced to two uncoupled
sub-problems by choosing incident waves that are symmetric or antisymmetric with the reflection coefficients
Rs = R + T and Ra = R − T . In particular, the reflection and transmission coefficients of the initial problem can
be expressed as R = (Rs + Ra)/2, and T = (Rs − Ra)/2 while the eigenvalues of the S-matrix can be written as
λ1 = Rs and λ2 = −Ra. For an one-sided incident wave, the absorption coefficient defined as α = 1 − |R|2 − |T |2

becomes α = (αs + αa)/2, where αs ≡ 1 − |Rs|
2 and αa ≡ 1 − |Ra|

2. Achieving α( fmax) = 1 at a frequency fmax,
is equivalent to getting simultaneously the minima of the reflection coefficients of the two sub-problems, i.e.,
Ra( fmax) = Rs( fmax) = 0 [αs( fmax) = αa( fmax) = 1]. This has been achieved in Ref. [16] for a mirror symmetric
slab through intensive numerical calculations.

3 Perfect and broadband absorption in asymmetric resonators: Rainbow-
trapping absorbers

In this section we analyze the scattering properties of a system made of N different HRs embedded in a
waveguide. Due to the different HRs, the S-matrix is not symmetric and the scattering properties from both
sides of the system must be analyzed. We start analyzing a system made of N = 2 HRs, considering the two
directions of incidence, namely forward and backward, as depicted in Figs. 1 (a,b). The n-th resonator of the
system presents a resonant frequency at fn. Figures 1 (c-f) show the corresponding absorption, reflection and
transmission coefficients for each case. 1

First, in the forward configuration, shown in Fig. 1 (a), above f1, a band gap is introduced and the
transmission is strongly reduced, the HR acting effectively as a rigidly-backed wall for the right ingoing waves.
Then, the resonator n = 2, with f2 > f1, is tuned to impedance match the system with the exterior medium at
frequency fPA, between f1 and f2. At this particular frequency, no reflected waves are produced and therefore,
α = 1 − |R−|2 − |T |2 = 1 holds. As shown in Ref. [6] the optimization process looks for the geometry that
introduce the good amount of viscothermal losses to minimize ε( fPA) = |R−( fPA)|2 + |T ( fPA)|2 that maximizes
the absorption at fPA. In this situation, unidirectional perfect absorption is observed. The optimization of the
geometry of the system, shows that a deep sub-wavelength panel with a thickness 40 times smaller that the
wavelength can be designed [6]. It is worth noting here that the change of section in the main waveguide helps
to achieve the impedance matching, specially for very thin systems as the one presented here.

1The results are calculated analytically using the transfer matrix method (TMM) in which the thermoviscous losses are accounted
for, numerically using finite element method (FEM) and experimentally validated using stereo-lithographic 3D printed structures and
impedance tube measurements. Details can be found in Ref. [6].
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Figure 1: Scheme of the sub-wavelength non-mirror symmetric panel in (a) forward and (b) backward
configuration. (c) Absorption for the forward configuration obtained using TMM (continuous line), FEM

(circles), and experiment (dotted line). (e) Corresponding reflection and transmission coefficients. (d)
Absorption for the backward configuration. (f) Corresponding reflection and transmission coefficients. The
arrows mark the resonance frequencies of the HRs, f1 and f2. Figure adapted with permission from Ref. [6].

Second, in the backward propagation shown in Fig. 1 (b), the wave impinges first the lowest resonance
frequency resonator from the right, f1. Now at this frequency almost no transmission is allowed in the
waveguide. As the waveguide is not impedance matched at f1 in backward direction, reflection is high and
absorption is poor (α+ = 0.05). For frequencies below f2, propagation is allowed in the main waveguide and
the effect of the second HR may be visible inducing a decrease of the reflection coefficient. However, the
impedance matching in the backward direction is not fully achieved and only a small amount of absorption is
observed near the resonance frequency of the first resonator.
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Figure 2: (a) Photograph of the sample containing 10 × 3 unit cells. (b) Absorption obtained by using the
TMM (continuous line), FEM simulations (circles) and measured experimentally (dotted line). (b)

Corresponding reflection (red curves) and transmission (blue curves) coefficients in amplitude. (d-e) Complex
frequency representation of the eigenvalues of the scattering matrix, λ1,2. Colormap in 10 log10 |λ|

2 scale.
Figure adapted with permission from Ref. [6].

The concept previuosly described can be applied to design broadband perfect absorbers. The idea is to create
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a frequency-cascade of band-gaps and critically coupled resonators in order to generate a rainbow-trapping
effect. We have designed a rainbow-trapping absorber (RTA) using N = 9 HRs and quantizing the dimensions
of all the geometrical elements that compose the structure to the 3D machine precision. More details are
given in Ref. [6]. The manufactured sample is shown in Fig. 2 (a). Figures 2 (b-c) show the absorption,
reflection and transmission of the device.2 The deepest resonator (n = 1) presents a resonance frequency of
f1 = fgap = 259 Hz, causing the transmission to drop. A set of 8 resonators were tuned following the process
previously described, with increasing resonance frequencies ranging from 330 to 917 Hz. As a result of the
frequency-cascade process, the impedance of the structure in the working frequency range is matched with the
exterior medium while the transmission vanishes. As a consequence, the RTA presents a flat and quasi-perfect
absorption coefficient in this frequency range (see Fig. 2 (b)). It can be observed that at low frequencies there
are small differences between the measurements and the models. These disagreements are mainly caused by
imperfections in the sample manufacturing, by imperfect fitting of the structure to the impedance tube, by the
possible evanescent coupling between adjacent waveguides and adjacent HRs, and/or by the limitations of the
visco-thermal model used at the joints between waveguide sections.

The corresponding representation of the the two eigenvalues of the S-matrix in the complex frequency plane
is shown in Figs. 2 (d-e). We can see that even under the constraints imposed by the metamaterial construction
process, all the N − 1 zeros of the eigenvalues that produce the critical coupling of the structure are located
very close to the real frequency axis being the zeros of λ1 at the same frequencies as those of λ2. Note in
the manufactured system, not all the zeros are located exactly on the real axis, but the quality factor of the
resonances is very low, therefore they overlap producing quasi-perfect sound absorption in a frequency band
from 300 to 1000 Hz for a panel 10 times thinner than the wavelength at 300 Hz in air.
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Figure 3: (a) shows the lossless (dashed lines) and lossy (continuous lines) scattering coefficients for the case
of a slit loaded by two identical resonators (red lines correspond to the reflection coefficient while blue lines
for the transmission one. Black lines represent the absorption coefficient for the lossy case). Inset shows the
schema of the scattering problem, with the incident direction indicated with the withe arrow. Vertical black
dashed line shows the symmetry plane of the resonator. (b) and (c) represent the absolute value of the total

pressure field for the two first resonances of the slit loaded with two identical resonators. Vertical black dashed
line shows the symmetry plane of the resonator. Figure adapted with permission from Ref. [17]. (d) Scheme of

the mirror-symmetric building block used in this work with the definitions of the geometrical parameters.
Figure adapted with permission from Ref. [17].

2Details of the modeling by the TMM, FEM and also of the experimental set-up are given in Ref. [6]
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4 Perfect absorption with mirror symmetric resonators

Let us start the discussion by analyzing the scattering coefficients of a system made of a slit loaded with
N resonators. This system presents N resonances. For simplicity but without loss of generality we analyze
here the case with N = 2 in which the resonance frequency of the HRs is fHR. we analyze the propagation
through a slit loaded by two HRs as shown in the inset of the Fig. 3(a). In this case the scattering coefficients
are plotted in Fig. 3(b), showing two transmission peaks corresponding to the first two Fabry-Perot resonances
of the slit. The two first resonances of the slit are clearly visible on Figs. 3(b,c) that depict the absolute value
of the total pressure field at these particular frequencies. The first mode is symmetric while the second mode is
antisymmetric with respect to the symmetry plane of the system (shown by the dashed line in Figs. 3(b,c)).

Previous discussion allows us to conclude that resonators with symmetric and antisymmetric resonances
can be designed with the combination of the discussed systems: a periodic arrangement of two slits loaded
respectively with one and two HRs. As a consequence, the resonator design that we propose now, shown in
Fig. 3(d), is a combination of slits loaded by one and two resonators. The slit loaded by a single resonator only
supports symmetric modes, and will thus be named symmetric slit. The slit loaded by two resonators supports
both symmetric and antisymmetric modes. It will be mainly used to tune the antisymmetric resonance and
will thus be named antisymmetric slit. The geometric parameters of the degenerate resonator are defined in
Fig. 3(d). The subindex s (a) represents the parameters for the symmetric (antisymmetric) slit.

In the previous section we have critically coupled the symmetric and the antisymmetric reflection
subproblems. This means that the two eigenvalues of the scattering matrix vanish at the same frequency for
the full transmission problem with the optimized geometry. Therefore, the full problem is critically coupled
and perfect absorption is expected. Details of the geometry obtained from the optimization problem for the
complete resonator can be found in Ref. [17].

Figure 4(a) shows the scattering coefficients of the full transmission problem. The agreement between the
model, the numerical simulations and the experimental results is very good. Note here that the presence of
the Bloch waves is crucial in this kind of systems: if only plane waves had been accounted for in the system,
the model would not have reproduced the whole wave process because the evanescent coupling would have
been neglected (see Ref. [17] and its supplementary material for more details). When the Bloch waves are
considered, a perfect absorption peak appears at fPA = 800 Hz as analytically, numerically and experimentally
observed. Figure 4(b) shows the acoustic field of the full problem at the perfect absorption peak. It is worth
noting here that perfect absorption is very sensible to the geometry of the resonators, and this would explain
the slight discrepancies between the analytical or numerical predictions and the experimental results. The
symmetric slit exhibits the symmetric Fabry-Perot mode while the antisymmetric slit exhibits the antisymmetric
Fabry-Perot mode. Both modes are excited at the same frequency, i.e., the structure presents a degenerate
resonance.
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Figure 4: (a) Analytical, numerical and experimental scattering coefficients of the full problem. (b) Represents
the absolute value distribution of the acoustic field at the perfect absorption of the full scattering problem.

Figure adapted with permission from Ref. [17].
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5 Conclusions

The conditions to obtain perfect absorption in ventilated problems with both mirror and non-mirror
symmetric systems are discussed in this talk. We have shown that with non-mirror symmetric systems
unidirectional perfect absorption can be obtained. For the case of mirror-symmetric system perfect absorption
can be obtained by means of degenerate resonators, i.e., resonators presenting symmetric and antisymmetric
resonances impedance matched at the same frequencies. Two examples of acoustic metamaterials made
of Helmholtz resonators are described, showing the possibilities of both non-mirror and mirror symmetric
systems. These materials are based on the concept of slow waves allowing to shift the resonances to the deep
sub-wavelength regimes. The results shown in this work show the advances in the field of deep sub-wavelength
absorption in the ventilated problems for airborne acoustics. They could motivate new developments to
design broadband and omnidirectional deep sub-wavelength acoustic absorbers that will could transform the
traditional means of both absorbing and controlling sound.
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